Time: 2 hours

(6)

Maximum marks: 30

Answer all questions. No marks will be awarded in absence of complete justification.

Throughout, all groups are finite. All representations are over the field of complex numbers.

- 1. (a) Find the character of the regular representation $\mathbb{C}G$ of a group G.
 - (b) Prove that if d_1, d_2, \ldots, d_r are the degrees of the distinct irreducible representations of G, then $o(G) = \sum_{i=1}^{r} d_i^2$. (2+4)
- 2. (a) Prove that if χ and σ are irreducible characters of groups G and H, then $\chi \times \sigma$ defined by

$$(\chi \times \sigma)(g,h) = \chi(g)\sigma(h), \quad \forall g \in G, h \in H$$

is also an irreducible character of $G \times H$.

- (b) Prove that every irreducible character of $G \times H$ is of the form $\chi \times \sigma$ for some irreducible characters χ and σ of G and H respectively. (2+4)
- 3. Compute the character table of the symmetric group S_4 .
- 4. (a) Prove that the characters of a group are algebraic integers.
- (b) Show that all characters of the symmetric group S_n are integers, for all $n \geq 2$.
 - (c) Are all characters of the alternating groups $A_n, n \ge 3$, integers as well? (2+8+2)
